RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2019 Number 5, Pages 30–39 (Mi ivm9461)

On regularization procedures with linear accuracy estimates of approximations

M. Yu. Kokurin

Mari State University, 1 Lenin sq., Yoshkar Ola, 424001 Russia

Abstract: We consider numerical methods for stable approximation of solutions to irregular nonlinear equations with general smooth operators in the Hilbert space. The known variational procedures and iterative regularization methods deliver approximations with accuracy estimates greater in order than error levels in the input data. In the paper for certain components of the desired solution we establish the possibility of obtaining approximations with linear accuracy estimates relative to the error level. These components correspond to the projections of the solution onto proper subspaces of the symmetrized derivative for the operator of the problem.

Keywords: ill-posed problem, Tikhonov method, iterative regularization, Gauss–Newton method, accuracy estimate.

UDC: 517.988

Received: 28.03.2018
Revised: 17.04.2018
Accepted: 20.06.2018

DOI: 10.26907/0021-3446-2019-5-30-39


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2019, 63:5, 27–35

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026