RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2019 Number 3, Pages 90–96 (Mi ivm9449)

This article is cited in 4 papers

Brief communications

Ideal $F$-norms on $C^*$-algebras. II

A. M. Bikchentaev

Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia

Abstract: We study ideal $F$-norms $\|\cdot\|_p$, $0 < p <+\infty$ associated with a trace $\varphi$ on a $C^*$-algebra $\mathcal{A}$. If $A, B$ of $\mathcal{A}$ are such that $|A|\leq |B|$, then $\|A\|_p \leq \|B\|_p$. We have $\|A\|_p=\|A^*\|_p$ for all $A$ from $\mathcal{A}$ ($0 < p <+\infty$) and $\|\cdot\|_p$ is a seminorm for $1 \leq p <+\infty$. We estimate the distance from any element of unital $\mathcal{A}$ to the scalar subalgebra in the seminorm $\|\cdot\|_1$. We investigate geometric properties of semiorthogonal projections from $\mathcal{A}$. If a trace $\varphi$ is finite, then the set of all finite sums of pairwise products of projections and semiorthogonal projections (in any order) of $\mathcal{A}$ with coefficients from $\mathbb{R}^+ $ is not dense in $\mathcal{A}$.

Keywords: Hilbert space, linear operator, projection, semiorthogonal projection, unitary operator, inequality, $C^*$-algebra, trace, ideal $F$-norm.

UDC: 517.98

Received: 10.09.2018
Revised: 17.09.2018
Accepted: 26.09.2018

DOI: 10.26907/0021-3446-2019-3-90-95


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2019, 63:3, 78–82

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026