RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2019 Number 1, Pages 76–85 (Mi ivm9433)

On existence of solutions to spatial nonlinear boundary-value problems for arbitrary elastic inhomogneous anisotropoic body

S. N. Timergalieva, R. S. Yakushevb

a Kazan State Achitecture and Civil Engineering University, 1 Zelyonaya str., Kazan, 420043 Russia
b Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia

Abstract: We study the solvability of a nonlinear boundary-value problem for systems of nonlinear partial differential equations of second order. The aim of the work is the proof the theorem existence for solutions. The problem is reduced to a system of three-dimensional nonlinear singular integral equations, whose solvability can be proved with the use of the symbol of a singular operator and the principle of compressed mappings.

Keywords: elastic inhomogeneous anisotropic body, equilibrium equations, boundary-value problem, three-dimensional singular integral equations, symbol singular operator, existence theorem.

UDC: 517.958:539.3

Received: 02.11.2017
Revised: 02.11.2017
Accepted: 22.03.2018

DOI: 10.26907/0021-3446-2019-1-76-85


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2019, 63:1, 67–75

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026