RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2018 Number 12, Pages 50–59 (Mi ivm9419)

This article is cited in 2 papers

Modular sesquilinear forms and generalized Stinspring representation

A. V. Kalinichenkoa, I. N. Malievb, M. A. Plievc

a North-Caucasian Institute of Mining and Metallurgy named after K.L. Khetagurov, (State Technological University), 44 Nikolaeva str., Vladikavkaz, 362021 Russia
b North-Ossetian State University, 44–46 Vatutina str., Vladikavkaz, 362025 Russia
c Southern Mathematical Institute, the Vladikavkaz Scientific Center of the Russian Academy of Sciences, 22 Markusa str., Vladikavkaz, 362027 Russia

Abstract: We consider completely positive maps defined on locally $C^{\ast}$-algebra and taking values in the space of sesquilinear forms on Hilbert $C^{\ast}$-module $\mathcal{M}$. We construct the Stinspring type representation for this type of maps and show that any two minimal Stinspring representations are unitarily equivalent.

Keywords: Hilbert $C^\ast$-module, locally $C^{\ast}$-algebra, sesquilinear form, completely positive map, $\ast$-homomorphism, positive definite kernel, Stinspring's representation.

UDC: 517.983:517.986

Received: 08.11.2017


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2018, 62:12, 42–49

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026