Abstract:
We consider a covariant functor from the category of an arbitrary partially ordered set into the category of $C^*$-algebras and their $*$-homomorphisms. In this case one has inductive systems of algebras over maximal directed subsets. The article deals with properties of inductive limits for those systems. In particular, for a functor whose values are Toeplitz algebras, we show that each such an inductive limit is isomorphic to a reduced semigroup $C^*$-algebra defined by a semigroup of rationals. We endow an index set for a family of maximal directed subsets with a topology and study its properties. We establish a connection between this topology and properties of inductive limits.
Keywords:covariant functor, direct product of $C^*$-algebras, inductive limit for an inductive system of $C^*$-algebras, partially ordered set, semigroup $C^*$-algebra, Toeplitz algebra, topology.