RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2018 Number 6, Pages 63–77 (Mi ivm9368)

Three-webs defined by symmetrical functions

A. M. Shelekhov

Tver State University, 33 Zhelyabov str., Tver, 170000 Russia

Abstract: We consider local differential-geometrical properties of curvilinear $k$-webs defined by symmetric functions (the webs $SW(k)$). The algebraic rectilinear $k$-webs defined by algebraic curves of genus $0$ are the symmetric $k$-webs. We prove that $3$ three-parameter families of $T$-configurations are closed on every symmetric $k$-web. We find the equations of a rectilinear $SW(k)$-web in adapted coordinates. It is proved that the curvature of a $SW(k)$-web is a skew-symmetric function with respect to adapted coordinates. In conclusion, we formulate some unsolved problems.

Keywords: curvilinear $k$-web, symmetric $k$-web, $k$-web equations, Thomsen configuration, rectilinear $k$-web, algebraic $k$-web, three-web curvature.

UDC: 514.763

Received: 06.04.2017


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2018, 62:6, 56–68

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026