RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2017 Number 9, Pages 76–88 (Mi ivm9281)

This article is cited in 5 papers

Essential spectrum of three-particle discrete operator corresponding to a system of three fermions on a lattice

A. M. Khalkhuzhaev

Samarkand State University, 15 Universiteskii blvd., Samarkand, 140101 Republic of Uzbekistan

Abstract: We consider a family of three-particle discrete Shrödinger operators $H_\mu(K)$, associated to a system of Hamiltonian of three identical particles (fermions) with pairwise two-particles interactions on neighboring junctions on $d$-dimensional lattice $\mathbb{Z}^{d}$. The location and structure of the essential spectrum of the operator $H_\mu(K)$ is described for all three-particles quasi-momentum $K\in \mathbb{T}^d$ and interaction energy $\mu>0$.

Keywords: spectral properties, three-particle Shrödinger operators, Hamiltonian of systems of three fermions, essential spectrum, eigenvalue.

UDC: 517.946

Received: 29.04.2016


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, 61:9, 67–78

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026