RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2017 Number 7, Pages 30–40 (Mi ivm9256)

Existence of eigenvalues of operators acting in $L^2(R^n)$

V. S. Mokeychev

Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia

Abstract: We write out conditions that help to prove the existence of eigenvalues and characteristic values for operator $F(D)-C(\lambda): L^{2}(R^{m})\to L^{2}(R^{m})$, where $F(D)$ is a pseudodifferential operator with a symbol $F(i\xi)$ and $C(\lambda): L^{2}(R^{m}) \to L^{2}(R^{m})$ is a linear continuous operator.

Keywords: pseudodifferential operator, characteristic values, eigenvalues.

UDC: 517.956

Received: 09.02.2016


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, 61:7, 25–34

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026