Abstract:
We investigate a rate of convergence of estimates for approximations generated by Tikhonov's scheme for solving ill-posed optimization problems with smooth functionals under a structural nonlinearity condition in a Hilbert space, in the cases of exact and noisy input data. In the noise-free case, we prove that the power source representation of the desired solution is close to a necessary and sufficient condition for the power convergence estimate having the same exponent with respect to the regularization parameter. In the presence of a noise, we give a parameter choice rule that leads for Tikhonov's scheme to a power accuracy estimate with respect to the noise level.