RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2017 Number 4, Pages 15–22 (Mi ivm9224)

Inner derivations of simple Lie pencils of rank $1$

N. A. Koreshkov

Kazan (Volga Region) Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia

Abstract: We prove that simple Lie pencils of rank $1$ over algebraically closed field $P$ of characteristic 0, whose operators of left multiplications have the form of sandwich algebra $M_3(U,\mathcal{D}')$, where $U$ is a subspace of all skew-symmetric matrices in $M_3(P)$, $\mathcal{D}'$ is any subspace containing $\langle E\rangle$ in a space of all diagonal matrices $\mathcal{D}$ in $M_3(P)$.

Keywords: Lie pencil, Cartan subalgebra, torus, inner derivation, sandwich algebra.

UDC: 512.554

Received: 29.09.2015


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, 61:4, 11–17

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026