RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2017 Number 3, Pages 78–83 (Mi ivm9219)

This article is cited in 1 paper

Brief communications

On unique solvability of one nonlinear nonlocal with respect to a gradient solution of a nonstationary problem

A. S. Ivanova, M. F. Pavlova

Kazan (Volga Region) Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia

Abstract: We consider a parabolic equation whose space operator is a product of nonlinear bounded function which depends on nonlocal characteristic with respect to a solution gradient and strongly monotone, potential operator. We prove the existence and uniqueness of the solution in the class of the vector-valued functions with values in the Sobolev space.

Keywords: parabolic equation, strongly monotone operator, nonlocal operator, generalized solution, solvability, uniqueness.

UDC: 517.63

Received: 26.08.2016


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, 61:3, 67–71

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026