RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2017 Number 1, Pages 3–11 (Mi ivm9191)

Tricomi problem for $q$-difference analog of anticipatory-retarding equation of mixed type

A. N. Zarubin

Orel State University, 95 Komsomol'skaya str., Orel, 302026 Russia

Abstract: We investigate a boundary-value problem for mixed-type equation with the Lavrent'ev–Bitsadze operator in the main part and $q$-difference deviations of an argument in the lowest terms. We construct a general solution to the equation and prove a uniqueness theorem without limitations on the deviation value. The problem is solvable. We find integral representations of solutions in the elliptic and hyperbolic domains.

Keywords: mixed-type equation, integral equation, $q$-difference equation, successive approximations method.

UDC: 517.956

Received: 01.07.2015


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2017, 61:1, 1–9

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026