RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2016 Number 9, Pages 51–58 (Mi ivm9151)

On the solvability of nonlocal problem for a hyperbolic equation of the second kind

O. A. Repina, S. K. Kumykovab

a Samara State Economic University, 141 Sovetskoi Armii str., Samara, 443090 Russia
b Kabardino-Balkarian State University, 173 Chernyshevskii str., Nalchik, 360004 Russia

Abstract: In the characteristic triangle, for a hyperbolic equation of the second kind we study a nonlocal problem when boundary condition contains a linear combination of operators of fractional Riemann–Liouville integro-differentition. We establish intervals of change of orders of operators of fractional integro-differentiation associated with the parameters of the equation for which the problem is either uniquely solvable or has more than one solution.

Keywords: operators of fractional integro-differentiation, Volterra integral equation of the second kind, method of successive approximations.

UDC: 517.956

Received: 27.02.2015


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2016, 60:9, 46–52

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026