Abstract:
In the capacity of a solution concept of cooperative TU-game we propose the $\alpha$-$N$-prenucleoli set, $\alpha\in R$, which is a generalization of the $[0,1]$-prenucleolus. We show that in a cooperative game the $\alpha$-$N$-prenucleoli set takes into account the constructive power with weight $\alpha$ and the blocking power with weight $(1-\alpha)$ for all possible values of the parameter $\alpha$. Having introduced two independent parameters we obtain the same result – the set of vectors which coincides with the set of $\alpha$-prenucleoli. Moreover, the $\alpha$-$N$-prenucleoli set satisfies duality and independence of an excess arrangement. Finally, the covariance property has been expanded. Some examples are given to illustrate the results.