RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2016 Number 4, Pages 8–13 (Mi ivm9099)

This article is cited in 1 paper

Approximation of double-valued function by an algebraic polynomial

I. Yu. Vygodchikova

Saratov State University, 83 Astrakhanskaya str., Saratov, 410012 Russia

Abstract: We consider the minimax model of nonlinear structure for approximation of double-valued function by an algebraic polynomial. We give the conditions of optimality in the form of far-reaching generalization of P. L. Chebyshev's alternance conditions in the problem of approximation of a function by a polynomial.

Keywords: minimax, nonsmooth analysis, double-valued function, selector, approximating polynomial.

UDC: 517.518+519.651

Received: 20.08.2014


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2016, 60:4, 5–9

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026