RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2015 Number 11, Pages 23–31 (Mi ivm9049)

This article is cited in 4 papers

The listing of topologies close to the discrete one on finite sets

I. G. Velichkoa, P. G. Stegantsevab, N. P. Bashovab

a Chair of Higher Mathematics and Physics, Tavria State Agrotechnological University, 18 B. Khmelnitskogo Ave., Melitopol', Zaporozhye Region, 72310 Ukraine
b Chair of Algebra and Geometry, Zaporozhye National University, 66 Zhukovskogo str., Zaporozhye, 69600 Ukraine

Abstract: We consider $T_0$-topologies on $n$-element set that contain more than $2^n$ elements. We solve a problem of listing and counting of such topologies. For this purpose we introduce the notions of an index of the topology and a vector of the topology. We study their properties and single out all possible classes of the topologies under the consideration. We formulate and prove a theorem related to the number of the topologies in each of the classes.

Keywords: topology on a finite set, $T_0$-topology, index of an element of a topology, index of a topology, vector of a topology.

UDC: 519.115

Received: 19.03.2014


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2015, 59:11, 19–25

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026