RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2015 Number 8, Pages 25–32 (Mi ivm9025)

On complexity of problem of satisfiability for systems of countable-valued functional equations

I. S. Kalinina, S. S. Marchenkov

Chair of Mathematical Cybernetics, Moscow State University, 1 Leninskie Gory, Bld. 52, GSP-1, Moscow, 119991 Russia

Abstract: We consider the problem of satisfiability for systems of countable-valued functional equations, containing ternary discriminator function $p$. We prove that this problem is $m$-complete in the class $\Pi_1$ of Kleene–Mostovsky's hierarchy.

Keywords: functional equations, countable-valued logic, problem of satisfiability.

UDC: 519.716

Received: 06.06.2014


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2015, 59:8, 19–24

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026