RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2015 Number 7, Pages 36–48 (Mi ivm9017)

Penalty method for the state equation for an elliptical optimal control problem

A. V. Lapin, D. G. Zalyalov

Chair of Mathematical Statistics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia

Abstract: We solve an optimal control problem of a system governed by a linear elliptic equation with pointwise control constraints and non-local state constraints by finite difference method. A discrete optimal control problem is approximated by a minimization problem with penaltized state equation. We derive an error estimates. We also prove the rate of convergence of block Gauss–Zeidel iterative solution method for the penaltized problem. We present the results of the numerical experiments.

Keywords: constraint saddle point problem, optimal control, finite difference approximation, iterative methods.

UDC: 519.6

Received: 21.01.2014


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2015, 59:7, 31–43

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026