RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2014 Number 9, Pages 59–68 (Mi ivm8930)

This article is cited in 9 papers

On asymptotic form of the Hermite–Pade approximations for a system of Mittag-Leffler functions

A. P. Starovoitov

Chair of Differential Equations and Function Theory, F. Skorina Gomel State University, 104 Sovetskaya str., Gomel, 246019 Republic of Belarus

Abstract: Using the Laplace method we study asymptotic properties of Hermite integrals. In particular, we determine the asymptotic form of diagonal Hermite–Pade approximations for the system of exponents. Similar results are proved for the system of confluent hypergeometric functions. The obtained theorems supplement the known results by F. Wielonnsky, A. I. Aptekarev and other authors.

Keywords: Hermite integrals, joint Pade approximations, Hermite–Pade approximations, asymptotic equalities.

UDC: 517.538

Received: 17.03.2013


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2014, 58:9, 49–56

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026