RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2014 Number 6, Pages 3–8 (Mi ivm8899)

On a set of ambiguous points of a functions in the $\mathbb R^n$

E. G. Ganenkova

Chair of Mathematical Analysis, Petrozavodsk State University, 33 Lenin Ave., Petrozavodsk, 185910 Russia

Abstract: It is known that an arbitrary function in the open unit disk can have at most countable set of ambiguous points. Point $\zeta$ on the unit circle is an ambiguous point of a function if there exist two Jordan arcs, lying in the unit ball, except the endpoint $\zeta,$ such that cluster sets of function along these arcs are disjoint. We investigate whether it is possible to modify the notion of ambiguous point to keep the analogous result true for functions defined in the $n$-dimensional Euclidean unit ball.

Keywords: cluster set, ambiguous point.

UDC: 517.518

Received: 30.11.2012


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2014, 58:6, 1–5

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026