RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2013 Number 12, Pages 83–88 (Mi ivm8857)

This article is cited in 5 papers

Brief communications

A homogeneous Hilbert problem with a countable set of discontinuity points of coefficients and a logarithmic singularity of index

R. B. Salimov, P. L. Shabalin

Chair of Higher Mathematics, Kazan State University of Architecture and Engineering, 1 Zelyonaya str., Kazan, 420043 Russia

Abstract: We consider the Hilbert problem for the upper half-plane with a countable set of discontinuity points of coefficients of the boundary condition and with a two-side curling at infinity of a logarithmic order. We obtain formulas for the general solution to the problem.

Keywords: Riemann–Hilbert boundary value problem, curling at infinity, infinite index, entire function.

UDC: 517.54

Received: 17.06.2013


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2013, 57:12, 75–79

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026