RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2013 Number 2, Pages 56–66 (Mi ivm8775)

This article is cited in 12 papers

The Green function of the boundary value problem on a star-shaped graph

R. Ch. Kulaev

Department of Operator Theory, Southern Mathematical Institute, Vladikavkaz Scientific Center of Russian Academy of Sciences, Vladikavkaz, Republic of Northern Osetiya-Alaniya, Russia

Abstract: We consider a planar graph consisting of three edges with one common vertex. We are interested in the sign of the Green function of the boundary value problem for a forth-order equation. This problem models deformations of star-shaped coupled networks of beams. We assume that the network is fixed at each vertex, and all beams are rigidly jointed at their common vertex. We prove that the Green function is positive on diagonal squares and establish a sufficient condition for its positivity inside its definition domain.

Keywords: graph, network, differential equation on graph, Green function of problem on graph.

UDC: 517.927

Received: 19.12.2011


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2013, 57:2, 48–57

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026