RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2012 Number 11, Pages 67–71 (Mi ivm8752)

This article is cited in 3 papers

Brief communications

A homogeneous Hilbert problem with discontinuous coefficients and two-side curling at infinity of order $1/2\leq\rho<1$

R. B. Salimov, P. L. Shabalin

Chair of Higher Mathematics, Kazan State University of Architecture and Engineering, Kazan, Russia

Abstract: We study a homogeneous Riemann–Hilbert boundary value problem in the upper half of the complex plane with a countable set of coefficient discontinuities and two-side curling at infinity. We obtain a general solution in the case when the problem index has a power singularity of order $\rho$, $1/2\leq\rho<1$, and study the solvability conditions.

Keywords: Riemann–Hilbert boundary value problem, curling at infinity, entire functions.

UDC: 517.54

Received: 17.06.2012


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2012, 56:11, 58–61

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026