Abstract:
In the space $L_p(\mathbb R^n)$, $1<p<\infty$, we study a new wide class of integral operators with anisotropically homogeneous kernels. We obtain sufficient conditions for the boundedness of operators from this class. We consider the Banach algebra generated by operators with anisotropically homogeneous kernels of compact type and multiplicatively slowly oscillating coefficients. We establish a relationship between this algebra and multidimensional convolution operators, and construct a symbolic calculus for it. We also obtain necessary and sufficient conditions for the Fredholm property of operators from this algebra.