RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2012 Number 3, Pages 51–61 (Mi ivm8445)

Nonholonomic torses of the first kind

O. V. Tsokolova

Chair of Geometry, Tomsk State University, Tomsk, Russia

Abstract: In the three-dimensional Euclidean space we study two-dimensional nonholonomic distributions of planes orthogonal to a vector field with zero total curvature of the first kind (they are called nonholonomic torses of the first kind). Using the Cartan method [1] and a canonical moving frame, we study geometric properties of two kinds: 1) one of the principal curvatures of the first kind differs from zero (the general case); 2) both principal curvatures of the first kind equal zero (a nonholonomic plane). The result in case 2) is obtained in a general form.

Keywords: nonholonomic geometry, distribution, Pfaff equation, vector field.

UDC: 514.752

Received: 23.01.2011


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2012, 56:3, 45–54

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026