RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2011 Number 11, Pages 58–71 (Mi ivm8395)

This article is cited in 9 papers

Natural multitransformations of multifunctors

S. N. Tronin

Chair of Algebra and Mathematical Logic, Kazan (Volga Region) Federal University, Kazan, Russia

Abstract: We continue to develop the theory of multicategories over verbal categories. This theory includes both the usual category theory and the theory of operads, as well as a significant part of the classical universal algebra. We introduce the notion of natural multitransformations of multifunctors, owing to which categories of multifunctors from a multicategory to another one turn into multicategories. In particular, any algebraic variety over a multicategory possesses a natural structure of a multicategory. Furthermore, we construct a multicategory analog of comma-categories with properties similar to the category case. We define the notion of the center of a multicategory and show that centers of multicategories are commutative operads (introduced by us earlier) and only they. We prove that the notion of a commutative FSet-operad coincides with the notion of a commutative algebraic theory.

Keywords: verbal category, multicategory, multifunctor, natural multitransformation, comma-multicategory, algebra over multicategory, center, commutative operad, commutative algebraic theory.

UDC: 512

Received: 21.09.2010


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2011, 55:11, 49–60

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026