RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2011 Number 8, Pages 56–68 (Mi ivm7866)

This article is cited in 10 papers

Solvability of geometrically nonlinear boundary-value problems for the Timoshenko-type anisotropic shells with rigidly clamped edges

S. N. Timergaliev

Chair of Applied Mathematics, Kama State Engineering Economic Academy, Naberezhnye Chelny, Russia

Abstract: In the nonlinear theory of shells all known existence theorems are based on the Kirchhoff–Love model. We prove a new existence theorem using the Timoshenko model.

Keywords: Timoshenko-type shell, equilibrium equations system, boundary-value problem, generalized shifts, generalized problem solution, integral images, Sobolev spaces, operator, integral equations, existence theorem.

UDC: 517.958+539.3

Received: 04.05.2010


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2011, 55:8, 47–58

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026