RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2011 Number 6, Pages 44–54 (Mi ivm7503)

This article is cited in 2 papers

Relative rotation and variational inequalities

V. S. Klimov, N. A. Demyankov

Chair of Mathematical Analysis, Yaroslavl State University, Yaroslavl, Russia

Abstract: We introduce the notion of relative rotation of a multivalued vector field generated by a monotone-type operator. We obtain lower bounds for the number of solutions of variational inequalities. We establish conditions of topological nature that guarantee the strong convergence of the Galerkin method and the penalty one.

Keywords: relative rotation, variational inequality, multivalued mapping, vector field, strong convergence.

UDC: 519.6

Received: 06.02.2010


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2011, 55:6, 37–45

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026