Abstract:
We consider non-standard generalized Hölder spaces of functions defined on a segment of the real axis, whose local continuity modulus has a majorant varying from point to point. We establish some properties of fractional integration operators of variable order acting from variable generalized Hölder spaces to those with a “better” majorant, as well as properties of fractional differentiation operators of variable order acting from the same spaces to those with a “worse” majorant.