Abstract:
In this paper we apply the method of potentials for studying the Dirichlet and Neumann boundary value problems for a $B$-elliptic equation in the form
$$
\Delta_{x''}u+B_{x_{p-1}}u+x_p^{-\alpha}\frac\partial{\partial x_p}\left({x_p^\alpha\frac{\partial u}{\partial x_p}}\right)=0,
$$
where $\Delta_{x''}=\sum^{p-2}_{j=1}\frac{\partial^2}{\partial x_j^2}$, $B_{x_{p-1}}=\frac{\partial^2}{\partial x_{p-1}^2}+\frac k{x_{p-1}}\frac\partial{\partial x_{p-1}}$ is the Bessel operator, $0<\alpha<1$ and $k>0$ are constants, $p\ge3$. We prove the unique solvability of these problems.