RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2010 Number 3, Pages 97–101 (Mi ivm6717)

This article is cited in 4 papers

Brief communications

Infinitesimal harmonic transformations and Ricci solitons on complete Riemannian manifolds

S. E. Stepanova, I. I. Tsyganokb

a Chair of Mathematics, Financial Academy at the Government of the Russian Federation, Moscow, Russia
b Chair of General Scientific Disciplines, Vladimir Branch of Russian University of Cooperation, Vladimir, Russia

Abstract: The definition of a Ricci soliton was introduced by R. Hamilton; it naturally generalizes the Einstein metric. A Ricci soliton on a smooth manifold $M$ is the triplet $(g_0,\xi,\lambda)$, where $g_0$ is a complete Riemannian metric, $\xi$ is a vector field, and $\lambda$ is a constant value such that the Ricci tensor $\mathrm{Ric}_0$ of the metric $g_0$ satisfies the equation $-2\mathrm{Ric}_0=L_\xi g_0+2\lambda g_0$. The following assertion is one of the main results of this paper. Assume that $(g_0,\xi,\lambda)$ is a Ricci soliton such that $(M,g_0)$ is a compete noncompact oriented Riemannian manifold, $\int_M\|\xi\|\,dv<\infty$, and the scalar curvature $s_0$ of the metric $g_0$ has a constant sign on $M$. Then $(M,g_0)$ is an Einstein manifold.

Keywords: Ricci solitons, infinitesimal harmonic transformations, complete Riemannian manifold.

UDC: 514.764

Received: 19.08.2009


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2010, 54:3, 84–87

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026