RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2010 Number 3, Pages 28–35 (Mi ivm6709)

This article is cited in 5 papers

A nonlocal problem for the Bitsadze–Lykov equation

O. A. Repina, S. K. Kumykovab

a Chair of Mathematical Statistics and Econometrics, Samara State Economic University, Samara, Russia
b Chair of Function Theory, Kabardino-Balkarian State University, Nalchik, Russia

Abstract: We study a nonlocal boundary value problem for a degenerate hyperbolic equation. We prove that this problem is uniquely solvable if integral Volterra equations of the second kind are solvable with various values of parameters and a generalized fractional integro-differential operator with a hypergeometric Gaussian function in the kernel.

Keywords: boundary value problem, fractional integro-differential operator, integral Volterra equation.

UDC: 517.956

Received: 22.11.2007


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2010, 54:3, 24–30

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026