RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2009 Number 12, Pages 49–58 (Mi ivm6024)

This article is cited in 17 papers

Nonlocal initial-boundary-value problems for a degenerate hyperbolic equation

Yu. K. Sabitova

Chair of Mathematical Analysis, Sterlitamak State Pedagogical Academy, Sterlitamak, Russia

Abstract: We consider the equation $y^mu_{xx}-u_{yy}-b^2y^mu=0$ in the rectangular area $\{(x,y)\mid0<x<1,\ 0<y<T\}$, where $m>0$, $b\ge0$, $T>0$ are given real numbers. For this equation we study problems with initial conditions $u(x,0)=\tau(x)$, $u_y(x,0)=\nu(x)$, $0\le x\leq1$, and nonlocal boundary conditions $u(0,y)=u(1,y)$, $u_x(0,y)=0$ or $u_x(0,y)=u_x(1,y)$, $u(1,y)=0$ with $0\le y\le T$. Using the method of spectral analysis, we prove the uniqueness and existence theorems for solutions to these problems.

Keywords: nonlocal problem, spectral method, completeness, sum of biorthogonal series.

UDC: 517.95

Received: 19.09.2007


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2009, 53:12, 41–49

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026