RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2009 Number 10, Pages 33–39 (Mi ivm3075)

This article is cited in 1 paper

On the homology groups of arrangements of complex planes of codimension two

A. V. Kazanovaa, Yu. V. Eliyashevb

a University of Massachusetts, Amherst, MA, USA
b Siberian Federal University, Krasnoyarsk, Russia

Abstract: In the study of two-dimensional compact toric varieties, there naturally appears a set of coordinate planes of codimension two $Z=\cup_{1<|i-j|<d-1}\{z_i=z_j=0\}$ in $\mathbb C^d$. Based on the Alexander–Pontryagin duality theory, we construct a cycle that is dual to the generator of the highest dimensional nontrivial homology group of the complement in $\mathbb C^d$ of the set of planes $Z$. We explicitly describe cycles that generate groups $H_{d+2}(\mathbb C^d\setminus Z)$ and $H_{d-3}(\overline Z)$, where $\overline Z=Z\cup\{\infty\}$.

Keywords: toric varieties, plane arrangements.

UDC: 515.16+517.55

Received: 20.06.2007


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2009, 53:10, 28–33

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026