RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2009 Number 6, Pages 76–80 (Mi ivm1475)

This article is cited in 8 papers

Brief communications

Splitting of 2-computably enumerable degrees with avoiding cones

M. M. Yamaleev

Chair of Algebra and Mathematical Logic, Kazan State University, Kazan, Russia

Abstract: In this paper we show that for any pair of properly 2-c. e. degrees $\mathbf0<\mathbf d<\mathbf a$ such that there are no c. e. degrees between $\mathbf d$ and $\mathbf a$, the degree $\mathbf a$ is splittable in the class of 2-c. e. degrees avoiding the upper cone of $\mathbf d$. We also study the possibility to characterize such an isolation in terms of splitting.

Keywords: 2-c. e. degrees, Turing degrees, splitting, splitting with avoiding cones, isolation.

UDC: 510.532

Received: 16.12.2008


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2009, 53:6, 63–66

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026