RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2008 Number 12, Pages 7–16 (Mi ivm1456)

This article is cited in 4 papers

Singularly perturbed Dirichlet boundary value problem for a stationary system in the linear elasticity theory

D. B. Davletov

Bashkir State University of Liberal Arts, Ufa

Abstract: We consider a singularly perturbed Dirichlet boundary value problem for an elliptic operator of the linear elasticity theory in a bounded domain with a small cavity. The main result is the proof of the theorem about the convergence of eigenelements of the perturbed boundary value problem to eigenelements of the corresponding limit boundary value problem, when the parameter $\varepsilon$ which defines the diameter of the small cavity tends to zero.

Keywords: operator, boundary value problem, singular perturbation, eigenelements.

UDC: 517.956

Received: 17.10.2006


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2008, 52:12, 4–12

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026