RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2026 Number 1, Pages 100–106 (Mi ivm10151)

Brief communications

Investigation of the number of negative eigenvalues of a third-order operator matrix on a non-integer lattice

T. H. Rasulov, Sh. B. Nematova

Bukhara State University, 11 M. Ikbol str., Bukhara, 200100 Republic of Uzbekistan

Abstract: In this paper, a family of block operator matrices ${\mathcal A}_{\mathrm h}(K),$ $K \in (-\pi/{\mathrm h}; \pi/{\mathrm h}]^3$, associated with the Hamiltonian of a system with a non-conserved number of particles not exceeding three on a non-integer lattice $({\mathrm h} {\mathbb Z})^3$ with step ${\mathrm h}>0$, is considered. It is established that the operator ${\mathcal A}_{\mathrm h}({\mathbf 0}),$ ${\mathbf 0}:=(0,0,0),$ has a finite number of negative eigenvalues if the corresponding generalized Friedrichs model has a zero eigenvalue. It is shown that the operator ${\mathcal A}_{\mathrm h}({\mathbf 0})$ possesses an infinite number of negative eigenvalues accumulating at zero (the Efimov effect) if the generalized Friedrichs model has a zero-energy resonance. An asymptotic formula is obtained for the number $N_{\mathrm h}(z)$ of eigenvalues of the operator ${\mathcal A}_{\mathrm h}({\mathbf 0})$ lying below $z,$ $z \leq 0$ as the spectral parameter $z\to -0.$

Keywords: Fock space, operator matrix, spectral parameter, generalized Friedrichs model, essential spectrum, the Efimov effect, asymptotics.

UDC: 517.984

Received: 15.12.2025
Revised: 15.12.2025
Accepted: 16.12.2025

DOI: 10.26907/0021-3446-2026-1-100-106



© Steklov Math. Inst. of RAS, 2026