RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2025 Number 10, Pages 44–49 (Mi ivm10126)

On a topologically uniformly continuous map

A. S. Bedritskiy

Belarusian State University, 4 Nezavisimosti Ave., Minsk, 220030 Belarus

Abstract: Let $X$ and $Y$ be metrizable spaces. A map $X \overset{f}{\longrightarrow} Y$ is called topologically uniformly continuous, if for every admissible metric $\rho$ on $X$ there is an admissible metric $\sigma$ on $Y$ such that for the metric spaces $(X,\rho)$ and $(Y, \sigma)$ the map $(X,\rho) \overset{f}{\longrightarrow} (Y, \sigma)$ is uniformly continuous. In this article such maps are investigated. As the main result, it is shown that, in a certain sense, topologically uniformly continuous maps are close to perfect maps.

Keywords: uniformly continuous map, perfect map, topologically uniformly continuous map, hyperspace, Hausdorff metric, infimum topology.

UDC: 515.12

Received: 06.07.2024
Revised: 06.07.2024
Accepted: 26.09.2024

DOI: 10.26907/0021-3446-2025-10-44-49



© Steklov Math. Inst. of RAS, 2026