RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2025 Number 7, Pages 3–19 (Mi ivm10101)

On the study of the Klein–Gordon equation in the Dunkl setting

M. Gaidia, M. Bedhiafiab

a Université Tunis El Manar, El Manar I, 2092 Tunisie
b Université Tunis, Rue Jawaher Lel Nehru, Montfleury, 1089 Tunisie

Abstract: In Dunkl theory on $\mathbb{R}^{n}$ which generalizes classical Fourier analysis, we study the solution of the Klein–Gordon-equation defined by:
$$\partial_{t}^{2}u-\Delta_{k}u=-m^{2}u , \ \ \ u (x,0)=g(x) , \ \ \ \partial_{t}u(x,0)=f(x) $$
with $m > 0$, $\partial_{t}^{2}u$ denoting the second derivative of the solution $u$ with respect to $t$, and $\Delta_{k}u$ the Dunkl Laplacian with respect to $x$ where $f$ and $g$ being two functions in $\mathcal{S}(\mathbb{R}^{n})$ defining the initial conditions. An integral representation for its solution is obtained, which makes it possible to study certain properties. As a specific result, the energies associated with the Dunkl–Klein–Gordon equation are studied.

Keywords: Dunkl theory, Klein–Gordon equation, Strichartz estimates, kinetic energy, potential energy.

UDC: 517

Received: 01.05.2024
Revised: 01.05.2024
Accepted: 26.09.2024

DOI: 10.26907/0021-3446-2025-7-3-19



© Steklov Math. Inst. of RAS, 2026