RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2025 Number 5, Pages 44–57 (Mi ivm10088)

Multiple interpolation problem for functions with zero spherical mean

V. V. Volchkov, Vit. V. Volchkov

Donetsk State University, 24 Universitetskaya str., Donetsk, 283001 Russia

Abstract: Let $|\cdot|$ be the Euclidean norm in $\mathbb{R}^n$, $n\geq 2$. For $r>0$, weLet $|\cdot|$ be the Euclidean norm in $\mathbb{R}^n$, $n\geq 2$. For $r>0$, we denote by $V_r(\mathbb{R}^n)$ the set of functions $f\in L_{\mathrm{loc}}(\mathbb{R}^n)$ satisfying the condition
\begin{equation*} \int_{|x|\leq r}f(x+y)dx=0 \text{for any} y\in\mathbb{R}^n. \end{equation*}
The paper investigates the interpolation of tempered growth functions of class $(V_r\cap C^{\infty})(\mathbb{R}^n)$ together with the derivatives of bounded order in a given direction. Let $d\in\mathbb{R}^n$, $\sigma\in\mathbb{R}^n\setminus\{0\}$ be fixed, $\{a_k\}_{k=1}^{\infty}$ be a sequence of points lying on the line $ \{x\in\mathbb{R}^n: x=d+t\sigma, t\in(-\infty,+\infty)\}$ and satisfying the conditions
\begin{equation*} \underset{i\ne j}\inf |a_i-a_j|>0, |a_k|\leq|a_{k+1}| \text{for all} k\in\mathbb{N}. \end{equation*}
Let also $m\in\mathbb{Z}_+$ and $b_{k,j}\in\mathbb{C}$ ($k\in\mathbb{N}$, $j\in\{0,\ldots,m\}$) be a set of numbers satisfying the condition
\begin{equation*} \underset{0\leq j\leq m}\max |b_{k,j}|\leq(k+1)^{\alpha} \end{equation*}
for all $k\in\mathbb{N}$ and some $\alpha\geq 0$ independent of $k$. It is shown (Theorem) that, under the indicated conditions, the interpolation problem
\begin{equation*}\left(\sigma_1\frac{\partial}{\partial x_1}+\ldots+\sigma_n\frac{\partial}{\partial x_n}\right)^jf(a_k)=b_{k,j}, k\in\mathbb{N}, j\in\{0,\ldots,m\}, \end{equation*}
is solvable in a class of functions belonging to $(V_r\cap C^{\infty})(\mathbb{R}^n)$, which, together with all their derivatives, have growth no higher than a power-law at infinity. It is noted that the condition of separability of nodes $\{a_k\}_{k=1}^{\infty}$ in the Theorem cannot be removed, and also that the solution of the considered interpolation problem is not the only one. In addition, it is stated that the one-dimensional analogue of the Theorem is not valid since every continuous function of class $V_r(\mathbb{R}^n)$ at $n=1$ is $2r$-periodic.

Keywords: interpolation, spherical mean, Fourier transform, Bessel function.

UDC: 517.5

Received: 29.03.2024
Revised: 19.04.2024
Accepted: 26.06.2024

DOI: 10.26907/0021-3446-2025-5-44-57



© Steklov Math. Inst. of RAS, 2026