RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2025 Number 4, Pages 60–70 (Mi ivm10082)

This article is cited in 2 papers

Certain residual properties of bounded nilpotent groups and their tree products

E. V. Sokolov

Ivanovo State University, 39 Ermak str., Ivanovo, 153025 Russia

Abstract: Let $\mathfrak{P}$ be a non-empty set of primes. We prove that any $\mathfrak{P}$-bounded nilpotent group is $\mathfrak{P}$-potent, and the tree product $T$ of a finite number of $\mathfrak{P}$-bounded nilpotent groups with proper locally cyclic edge subgroups is residually a finite $\mathfrak{P}$-group if and only if any vertex group of $T$ has no $\mathfrak{P}^{\prime}$-torsion and any edge subgroup of $T$ is $\mathfrak{P}^{\prime}$-isolated in the vertex group containing it. We prove also that the tree product of a finite number of groups with locally cyclic edge subgroups is residually a finite $p$-group if all its vertex groups have this property and any edge subgroup is separable in the corresponding vertex group by the class of finite $p$-groups.

Keywords: potent group, nilpotent group, residual finiteness, residual $p$-finiteness, residual solvability, generalized free product, tree product, fundamental group of a graph of groups.

UDC: 512.543

Received: 04.03.2024
Revised: 04.03.2024
Accepted: 18.12.2024

DOI: 10.26907/0021-3446-2025-4-60-70


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2025, 69:4, 52–61


© Steklov Math. Inst. of RAS, 2026