RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2024 Number 11, Pages 105–110 (Mi ivm10039)

Brief communications

The second-kind involutions of upper triangular matrix algebras

D. T. Tapkin

Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia

Abstract: We provide a criterion for the equivalency of the second-kind involutions of upper triangular matrix algebras over commutative rings. For an algebra $T_{n}(F)$ of upper triangular matrices over a field $F$ it is proven that two involutions are equivalent if and only if they coincide after restriction to $F$.

Keywords: upper triangular matrix algebra, involution, equivalency of involutions.

UDC: 512.55

Received: 23.08.2024
Revised: 23.08.2024
Accepted: 26.09.2024

DOI: 10.26907/0021-3446-2024-11-105-110


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2024, 68:11, 91–95


© Steklov Math. Inst. of RAS, 2026