RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2024 Number 11, Pages 81–87 (Mi ivm10036)

Brief communications

The shortest polygonal chains in the Heisenberg group

S. G. Basalaev

Novosibirsk State University, 1 Pirogova str., Novosibirsk, 630090 Russia

Abstract: We describe the shortest polygonal chains that connect two points on the first Heisenberg group with the sub-Riemannian structure. The shortest polygonal chain connecting two points with a fixed number of links either is a straight line or consists of segments of the same length such that the projections of their endpoints are inscribed in a circle. The analytical description is obtained for the spheres of the quasimetric generated by the shortest polygonal chains with 3 links.

Keywords: Heisenberg group, polygonal chain, shortest path.

UDC: 514.7: 517.97

Received: 02.07.2024
Revised: 02.07.2024
Accepted: 26.09.2024

DOI: 10.26907/0021-3446-2024-11-81-87


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2024, 68:11, 71–76


© Steklov Math. Inst. of RAS, 2026