RUS  ENG
Full version
JOURNALS // Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika // Archive

Izv. Vyssh. Uchebn. Zaved. Mat., 2024 Number 10, Pages 18–21 (Mi ivm10021)

This article is cited in 1 paper

Some new congruences for simultaneously $s$-regular and $t$-distinct partition function

P. Buragohain, N. Saikia

Rajiv Gandhi University, Rono Hills, Doimukh, Arunachal Pradesh, 791112 India

Abstract: A partition of a positive integer $n$ is said to be simultaneously $s$-regular and $t$-distinct partition if none of the parts is divisible by $s$ and parts appear fewer than $t$ times. In this paper, we present some new congruences for simultaneously $s$-regular and $t$-distinct partition function denoted by $ M_{s,t}^d (n)$ with $(s,t) \in \{(2,5),(3,4), (4,9), (5\alpha,5\beta),(7\alpha,7\beta),(p,p)\}$, where $\alpha$ and $\beta$ are any positive integers and $p$ is any prime.

Keywords: $s$-regular and $t$-distinct partition, congruence, $q$-series identities.

UDC: 517

Received: 07.12.2023
Revised: 30.12.2023
Accepted: 20.03.2024

DOI: 10.26907/0021-3446-2024-10-18-21


 English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2024, 68:10, 14–17


© Steklov Math. Inst. of RAS, 2026