RUS  ENG
Full version
JOURNALS // Izvestiya of Saratov University. Mathematics. Mechanics. Informatics // Archive

Izv. Saratov Univ. Math. Mech. Inform., 2013 Volume 13, Issue 1(2), Pages 104–108 (Mi isu386)

This article is cited in 1 paper

Mathematics

Finite Limit Series on Chebyshev Polynomials, Orthogonal on Uniform Nets

T. I. Sharapudinov

Daghestan Scientific Centre of the Russian Academy of Sciences, Makhachkala

Abstract: In the paper we construct new series, called finite limit series on Chebyshev (Hahn) polynomials $\tau^{\alpha,\beta}_n(x)=\tau^{\alpha,\beta}_n(x,N)$, orthogonal on uniform net $\{0,1,\ldots,N-1\}$. Their partial sums $S_n(f;x)$ equal in boundary points $x=0$ и $x=N-1$ with approximated function $f(x)$. Construction of finite limit series based on the passage to the limit with $\alpha\to-1$ of Fourier series $\sum\limits_{k=0}^{N-1}f_k^\alpha \tau_k^{\alpha,\alpha}(x,N)$ on Chebyshev (Hahn) polynomials $\tau_n^{\alpha,\alpha}(x,N)$, orthonormal on uniform net $\{0,1,\ldots,N-1\}$.

Key words: Fourier series, orthogonal polynomials.

UDC: 517.518.82

DOI: 10.18500/1816-9791-2013-13-1-2-104-108



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026