RUS  ENG
Full version
JOURNALS // Izvestiya of Saratov University. Mathematics. Mechanics. Informatics // Archive

Izv. Saratov Univ. Math. Mech. Inform., 2025 Volume 25, Issue 4, Pages 490–497 (Mi isu1100)

Scientific Part
Mechanics

Asymptotic equations of the hyperbolic boundary layer in the vicinity of the dilatation wave front in the viscoelastic shell of revolution

N. S. Anofrikova, L. Yu. Kossovich

Saratov State University, 83 Astrakhanskaya St., Saratov 410012, Russia

Abstract: In this article, the asymptotically approximate equations for the hyperbolic boundary layer in a thin semi  — infinite viscoelastic shell of revolution in the vicinity of the dilatation wave front at shock edge loading of the tangential type are derived. The Maxwell model represents the material of the shell. The equations are derived asymptotically from the 3-D equations of viscoelasticity in the special coordinate system. This system takes into account the geometry and size of the boundary layer region.

Key words: asymptotic method, hyperbolic boundary layer, shock loading, viscoelastic shell of revolution.

UDC: 539.3

Received: 19.05.2025
Accepted: 18.06.2025

DOI: 10.18500/1816-9791-2025-25-4-490-497



© Steklov Math. Inst. of RAS, 2026