RUS  ENG
Full version
JOURNALS // Meždunarodnyj naučno-issledovatel'skij žurnal // Archive

Meždunar. nauč.-issled. žurn., 2019 Issue 5(83), Pages 6–10 (Mi irj538)

PHYSICS AND MATHEMATICS

Approximative properties of proximal subspaces of infinite dimension

V. M. Fedorov

Lomonosov Moscow State University

Abstract: For subspaces $L$ of infinite dimension in a Banach space, the authors obtained the characteristic properties of the existence of elements of the best approximation. As an application, they prove that, in the space $C(T)$ of continuous functions on a connected Hausdorff compactum $T$, the Chebyshev subspace $L\subset C(T)$ of infinite dimension, the annihilator $L^\perp$ of which is separable and contains the minimal total subspace, is a hyperplane $L=\mathrm{ker}(\alpha)$ of a strictly positive functional $\alpha\in L^\perp$.

Keywords: annihilator, separability, dimension, codimension, proximal subspace, Chebyshev subspace.

DOI: 10.23670/IRJ.2019.83.5.001



© Steklov Math. Inst. of RAS, 2026