RUS  ENG
Full version
JOURNALS // Meždunarodnyj naučno-issledovatel'skij žurnal // Archive

Meždunar. nauč.-issled. žurn., 2016 Issue 9-2(51), Pages 128–131 (Mi irj149)

PHYSICS AND MATHEMATICS

The coloring of special kind bipartite graphs

A. M. Magomedov

Daghestan State University, Makhachkala

Abstract: A. S. Asratyan and C. J. Casselgren proved that the problem of the interval edge-coloring of biregular bipartite graph with degrees 6 and 3 respectively («(6,3)-graph») is NP-complete. The article shows that the minimum capacity of vertices $n$ such that (6,3)-graph prevents coloring of the required form equal to 18: any (6,3)-graph with $n<18$ allows interval edge-coloring; for each $n$ not less than 18 (and divided by 3) there is (6,3)-graph with $n$ vertices, for which a coloring impossible. The results are used for constructing an optimal schedules training sessions.

Keywords: graph, bipartite, coloring.

DOI: 10.18454/IRJ.2016.51.139



© Steklov Math. Inst. of RAS, 2026