RUS  ENG
Full version
JOURNALS // Itogi Nauki i Tekhniki. Sovremennaya Matematika i ee Prilozheniya. Tematicheskie Obzory // Archive

Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 2021 Volume 191, Pages 74–91 (Mi into766)

Attractors for an autonomous model of the motion of a nonlinear viscous fluid

V. G. Zvyagin, M. V. Kaznacheev

Voronezh State University

Abstract: In this paper, we examine the limit behavior of weak solutions of an autonomous model of motions of a nonlinear viscous fluid, in the case where the time tends to infinity. Namely, for solutions of the model considered, the existence of weak solutions on the positive semiaxis is proved, the corresponding trajectory space the model is introduced, and the existence of the minimal trajectory attractor and the global attractor in the phase space is proved. Thus, it turns out that any initial state of the system approaches to the global attractor.

Keywords: attractor, trajectory space, nonlinear viscous fluid, weak solution.

UDC: 517.958

MSC: 35B41

DOI: 10.36535/0233-6723-2021-191-74-91


 English version:
Journal of Mathematical Sciences (New York), 2025, 288:6, 739–756


© Steklov Math. Inst. of RAS, 2026