Abstract:
We examine the unique generalized solvability of the mixed problem for a higher-order nonlinear pseudoparabolic equation with two parameters in mixed derivatives. Using the Fourier variable separation method, we reduce the problem to a countable system of nonlinear integral equations whose unique solvability can be proved by the method of successive approximations. We prove the continuous dependence of a generalized solution to the mixed problem on the initial functions and the positive parameters.